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Abstract—The paper introduces a new software tool for the
simultaneous determination of the thermal and electrical

steady-state regimes of nonlinear microwave circuits contain-

ing temperature-dependent active devices. The analysis tech-

nique is an extension of the classic piecewise harmonic-balance

method, and is quite general-purpose. It can be applied to net-

works operating under multiple-tone excitation, including

pulsed-RF regimes. The simulation problem is reduced to a

nonlinear algebraic solving system whose unknowns are elec-
trical and thermal state-variable harmonics. Advauced numer-
ical techniques are used to effectively overcome the difficulties

arising from the high degree of nonlinearity and from the very

large number of unknowns of the numerical problem. The pro-
gram incorporates a facility for the evaluation of the thermal
constants of multiple-finger planar devices starting from geo-

metrical data.

I. INTRODUCTION

I N THE computer-aided design of microwave circuits,

especially power circuits, the prediction of the active

device operating temperatures represents a major con-

cern. The theoretical research on this subject is usually

aimed at the determination of the temperature distribution

inside an active device under dc (or CW) operating con-

ditions (e.g., [1]-[3]). From this kind of analysis, or al-

ternatively from suitable measurement procedures (e.g.,

[4]), one obtains the peak temperature in the device (e.g.,

the channel temperature in a microwave FET), which is

used to compute the device thermal resistance [3].

For periodically driven circuits (CW or single-tone op-

eration), it is usually safe to assume that the steady-state

device temperatures are time independent, because the

thermal time constants are large with respect to the RF

period. In some cases, especially in class-A operation, the

knowledge of a device thermal resistance may then pro-

vide a rough a priori estimate of its peak operating tem-

perature, making use of the expected bias point and
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power-added efficiency. In turn, this estimate maybe used

to adjust the temperature-dependent parameters of the de-

vice equivalent circuit. The situation is much more com-

plicated in class-AB or class-C operation, since then the

actual bias point is determined by nonlinear effects, such

as rectification, and is not a priori known. Further diffi-

culties arise under multitone excitation, since some of the

intermodulation (IM) products may have very long pe-

riods. As a typical example, in pulsed-RF conditions each

active device undergoes a thermal cycle which may have

a major influence on the circuit performance, but ob-

viously cannot be simply estimated. In all such cases the

analysis must include the search for the (possibly time-

dependent) unknown temperatures.

In this paper we introduce a novel CAD tool for the

simultaneous determination of the electrical regime and

the peak device temperatures in a nonlinear microwave

circuit containing temperature-dependent devices and

driven by multitone signals, including the pulsed-RF case.

The electrical behavior of each nonlinear device is de-

scribed by generalized parametric equations including

temperature among the state variables, and the thermal

behavior is characterized by a thermal resistance and a

thermal time constant. The thermal parameters of multi-

ple-finger planar devices are evaluated starting from lay-

out information, so that the transient thermal properties

of such devices can be directly related to their geometries.

As an example, a rigorous computation of the so-called

“thermal impedance” [5] of a power devise (depending

on pulse width) becomes straightforward in this way. This

new simulation capability thus represents a significant step

in the development of a general-purpose process-oriented

microwave CAD system.

The method of analysis presented in the paper is an ex-

tension of the well-known piecewise harmonic-balance

(HB) technique based on circuit decomposition. In steady-

state multitone operation, both the temperatures and the

electrical signals may be represented by multidimensional

truncated Fourier expansions. With the harmonic-balance

approach, the coefficients of such expansions represent the
problem unknowns. Since the device equations are tem-

perature-dependent, and in turn the device temperatures

depend on the voltages and currents at the device ports

through the internally dissipated powers, all these un-

knowns are coupled and must be determined by the nu-
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merical solution of a unique nonlinear algebraic system.

The evaluation of the device thermal parameters is based

on the well-known equivalence between the temperature

field and the potential distribution in a microstrip struc-

ture [6]. The general extension of the harmonic-balance

technique to thermal aspects is covered in Section II of

the paper. This section also addresses the efficient solu-

tion of the nonlinear system by a Newton–Raphson

method based on the exact computation of the Jacobian

matrix. Section III is more specifically devoted to a dis-

cussion of the pulsed-RF analysis of power circuits. The

same section also shows that the physical nature of the

pulsed-RF problem allows the harmonic-balance equa-

tions to be effectively decoupled, so that this class of sim-

ulations can be effectively handled on ordinary worksta-

tions in spite of their large numerical sizes. Finally,

Section IV describes the computation of the thermal pa-

rameters of a power device, and presents the analysis of

a FET amplifier circuit for illustrative purposes.

II. THE HARMONIC BALANCE TECHNIQUE

A. Formulation of the Problem

Let us consider a nonlinear microwave circuit operating

in a quasi-periodic electrical regime generated by the in-

termodulation of F sinusoidal tones of incommensurable

fundamental angular frequencies cq. Any signal a(t) sup-

ported by the circuit may be represented by the multiple

Fourier expansion

(1)

where ~k is a generic IM product of the fundamentals,

i.e.,

F

(2)

In (1), (2) ki is an integer harmonic number, k is an

F-vector of harmonic numbers, and WUis the F-vector of

the fundamentals. The vector kin (2) spans a finite subset

S of the k-space (containing the origin) which will be con-

ventionally named the signal spectrum. The Fourier coef-

ficient Ak will be named the harmonic of a(t) at ~k (or the

k-th harmonic of a(t)). Since we want the signal (1) to be

real, S must be symmetric with respect to the origin, and

A-k = A:. We shall also denote by S + the subset of S

such that~k > Oforkc S+.

Let the nonlinear subnetwork be described by the gen-

eralized parametric equations [7]

[

dnx
v(t) = u x(t), ~, “ “’” ,~, x~(t), l’(t)

1

[

d“x
i(t) = w x(t),:, ‘ “ “ >-j-J, x~ (t), T(t)

1
(3)

where v(t), i(t) are vectors of voltages and currents at the

common ports, x(t) is a vector of electrical state variables
(ESV) and xD(t) is a vector of time-delayed electrical state

variables, i.e., ~Di (t)= xi(t– I-i)with ri a time constant.

All vectors of electrical quantities appearing in (3) have

a same size nd equal to the number of common (device)

ports. T(t) is an M-vector of absolute temperatures mea-

sured at M suitable locations inside the nonlinear subnet-

work. In the first application of this new methodology,

we shall assume that the nonlinear subnetwork is a col-

lection of M nonlinear devices (M < nd) thermally iso-

lated from one another, and that the entries of T may be

identified with the peak temperatures in such devices. In

turn, T(t) will be written in the form

T(t) = TO + ~ T(t) (4)

where TO is a common room temperature which will be

considered as a priori known, and ~ T(t) is the set of max-

imum excess temperatures reached inside the nonlinear

devices. The entries of ~ T(t) represent the thermal state

variables (TSV). In principle, when the circuit is driven

by a multitone excitation such as a pulsed RF signal, each

TSV (namely, AT,(t), 1 < r < M) is a quasi-periodic

function of time of the form (1). In practice the thermal

time constants of real devices are much longer than the

RF period, so that, only low-frequency components are

usually sufficient for an adequate description of the tem-

perature waveforms. Thus AT, (t) will be represented by

(1) with S replaced by a thermal spectrum Sr C S.
The quasi-periodic electrical regime of the nonlinear

circuit resulting from a multi~one excitation is completely

defined by the set x(t) of electrical state variables and by

the set ~ T(t)of thermal state variables, Because of (1),

the state can be equivalently identified by the vectors X,

~ of the real and imaginary parts of the electrical and ther-

mal state-variable harmonics, respectively. The entries of

these vectors represent the problem unknowns. The total

number Of unknowns iS Nu = nd ns + ~nT, where ns k

the number of lines of the signal spectrum, and nT is the

number of lines of the thermal spectrum. Performing a

circuit simulation by the HB technique means finding these

unknowns. To do so, we derive a nonlinear solving sys-

tem by combining the usual requirement of vanishing

electrical harmonic-balance (EHB) errors with the ther-

mal equations of the nonlinear devices.

The linear subnetwork may be represented by the fre-

quency-domain equation

Y(u) v(a) + ‘iv(o)+ z(u)= o (5)

where V(Q), Z(u) are vectors of voltage and current pha-

sors at the device ports, Y(oJ) is the linear subnetwork ad-

mittance matrix, and A@) is a vector of Norton equiva-

lent current sources. Thus the set of complex EHB errors

at a generic IM product ~k has the expression

~Ek (X, ~) = y(~k)Uk(X, ~) + ~(~/J) + Wk (x, ~)

(6)

where Uk, Wk are the kth harmonics of u(t),w(t).In order

to avoid the use of negative frequencies, the nonlinear

solving system is formulated in terms of a vector HE of
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real and imaginary parts of the EHB errors given by (6)

fork eS+. Thus the electrical part of the solving system

has the form

HE(X,~) = o. (7)

In the first application of this new analysis technique,

we shall assume for simplicity that the thermal behavior

of each device is fully characterized by a thermal resis-

tance O and by a thermal time constant 7P Thus the ther-

mal equation of the generic (rth) device can be written

dAT,

‘T’ dt =
– A T, (t) + O,P, (t) (8)

where p,(t) is the instantaneous power dissipated in the

device under consideration, namely

(r)

P,(t) = ~ ‘j (t) ‘j (t).

The superscript (r) in (9) denotes that

(9)

the summation is

only extended to the ports belonging to the rth device.

We shall also assume that all devices are thermally lin-

ear (i. e., O, and ~~, are constants), though the simulation

methodology introduced here could be easily extended to

the case of temperature-dependent thermal parameters [8],

[9]. Taking the (multiple) Fourier transform of (8) we can

thus define the complex thermal harmonic-balance (THB)

error for the rth device at ~k as

where P,, k and A,, k are the kth harmonics of p, (t) and

AT, (t), respectively. Note that the THB errors are easily

computed through (3) and (9) as functions of the circuit

state. At this stage we introduce a vector HT of real and

imaginary parts of all the errors (10) for 1 < r < M and

k e S ~. The complete nonlinear solving system thus takes

the form

[

HE(X,~) = o
zf~(x, li) = o,

(11)

(11) is a system of IVu nonlinear real equations in Nu real

unknowns, which can be solved by well-known numerical

approaches, such as the Newton-Raphson method,

Note that the solution of (11) simultaneously provides

the electrical regime of the nonlinear circuit (described by

X) and the time-dependent peak temperatures of the non-

linear devices (described by ~).

B. Exact Computation of the Jacobian Matrix

It is well established that the best performance of the

Newton algorithm is obtained when the Jacobian of the

nonlinear system can be evaluated by a theoretically exact

algorithm rather than by numerical perturbations [10].

This has the twofold advantage of increasing both the

speed and the robustness of the analysis algorithm (par-

ticularly for large-size jobs), because the Jacobian eval-

uation process becomes faster, and the derivatives more

accurate. The computation of the exact Jacobian of (11)

will be discussed in this section.

The Jacobian may be written

[1
8HE 13HE

ax 8A ~
J=

dHT 8HT –
——

ax aA—
1JEE JET

(12)
JTE JTT “

Both for ease of representation and for later convenience,

the Jacobian is organized frequency-wise, i.e., is parti-

tioned into submatrices, each containing the derivatives

of the real and imaginary parts of the HB errors at a given

mixing product, with respect to the real and imaginary

parts of the SV harmonics at another mixing product. As

an example, the generic submatrix of JEE has the expres-

sion

‘EEks=[Y’13)
where X~ is the set of complex ESV harmonics at fl~. From

(6) we obtain, fork, s ~ S + and t G S:

where the function f [” ] may denote either the real or the

imaginary part. The derivatives of the voltage and current

harmonics U~, W~ are found in the following way. For the

voltages (e. g.) we first introduce the multiple Fourier ex-

pansions

au
— - Z Cm,, exp (jQqt)
aym – @EE

au— - *G~BEC?exp (jQqt)aXD–

au
~ = ~=~ETA, exp ( jQqt) (15)

where y. = X, ym = dmx/dtm (1 ~ m ~ n), and SEE, SET

will be named derivatives spectra. The derivation of the

first of (3) now yields the derivatives of the voltage har-

monics with respect to the state-variable harmonics (k, s

es+, t 6 SJ).:
auk

= ~$of[l+jl(.K4)m[I’_,n,k-, + {f [1 + jl}zaf[XSI

“ (–l)mb,k+s]

auk
— =f[l +j][Ak-, + {f[l +j]}2Ak+t]
af[~,]

(16)
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where

~~,k., = C~,~_, + 6) C~., exp (-jfl,~)

(os~~~). (17)

In (17) 8 is Kronecker’s symbol and ~ is the diagonal ma-

trix of the time delays. The vector summation index q in

each of the derivatives (15) must span the entire set of

values required in (16), where the combinations k ~ s and

k + t appear. This explains the introduction of indepen-

dent spectra for the derivatives. Similar expressions hold

for the derivatives of the current harmonics. Equations (16)

and (17) together with (14) allow a fast computation of

~m and JET. Note that JEE coincides with the Jacobian
matrix of a conventional HB analysis based on electrical

state variables only [7].

In order to evaluate JT~ and JTT, we first gather all the

complex errors (10) associated with a given IM product

fl~ into a vector of complex THB errors analogous to

(6), namely

E%(X, ~) = L@k(x> ~) - &k (18)

where pk and& are the sets of kth harmonics of p, (t) and

AT, (t) for 1 < r < M, respectively, and Lk is the diag-

onal matrix

From (18) we obtain, fork, t c

dEm dpk
‘=L, —
af [X,I af [XSI

aE~ apk
‘= Lk—–
af[AJ

f[l + j] 8jZM (20)
af[~t]

where 1~ denotes an identity matrix of order M.

The key information required for the computation of

(20) is thus represented by the derivatives of P, with re-

spect to both X, and ~ ~. These can be obtained in the fol-

lowing way. Let us temporarily denote by y any of the

arguments of the device equations (3). From (9) we get

The point here is that the samples of u, w, thz/ay, &v/ay,
are already available as a result of the computation of JEE,

JET (and in particular of the expansions (15)), so that the
samples of (21) may be immediately found. Thus we can

also compute the coefficients of the multiple Fourier ex-

pansions

dp
— = ,E& Fm,q exp ( j(lqt)
aym
ap— = ,e~rEF; exp ( j~qt)aXD
ap~ =:~E$wG, exp (jQqt) (22)
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where p is the vector of the dissipated powers p, (t) (1 s

r s M), and S~~, STT are suitable derivatives spectra. The

required derivatives may now be expressed by equations

similar to (16), (17):

apk— . 5 f[l + j](j%)”’[!!?m,k-s + {,$[1 + ~]}’af[X,I ~=o

“ (–l)mm%k+sl

i?)pk
— ‘f[l +j][G,-, + {f[l + j]}2Gk+t]
af[~t]

(23)

where

III. PULSED-RF OPERATION OF POWER CIRCUITS

A. Analysis Approach

Let the nonlinear circuit be excited by an RF sinusoidal

source of angular frequency o+ (carrier) modulated by a

periodic signal s(t) of period 27r/c02. For the applications

of interest in this section, s(t) is ideally a sequence of

rectangular pulses, which for practical purposes is ap-

proximated by a truncated Fourier expansion with N har-

monics. Thus we have

s(t) = $ S~, exp (jk2 W2t) (25)
,2= –N

where s-k, = S:. In agreement with (l), the unmodulated

input signal is represented by

v(t) = 2 Re [Vl exp (jul t)] (26)

so that the modulated excitation becomes

u(t) = v(t) s(t)

=2Re
[ 1

,2 $_N V, S,2 exp [j(col + k,c02)t] . (27)

Exciting the circuit by the signal (27) is equivalent to

applying at the RF input port 2N -t 1 sinusoidal sources

of complex amplitudes 2 VIS~, and frequencies al + k2 ti2
(0 ~ lk2\ ~ N) connected in series. It is thus clear that

a pulsed-RF analysis can be treated by the harmonic-bal-

ance technique as a special case of multitone excitation.

The exciting frequencies col + k2 c02can be viewed as in-

termodulation products of two incommensurable funda-

mentals q, ~2, so that the problem defined by the exci-

tation (27) is in fact a two-tone problem, with an unusually

large number of harmonically related sinusoidal sources.

Of course, this is only true when the sequence of pulses

is periodic. However, if the pulse repetition time is long

enough with respect to the thermal constants of the active

devices, the results are also valid for isolated pulses (and

for non-periodic sequences). Note that the modulation de-

fined by (25) can be applied to the bias sources as well.

In this case a dc source EOSo and N sinusoidal sources of

complex amplitudes 2E0 & at frequencies k2 ti2 (1 s k2



1450 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992

s N) are connected in series to the bias port of interest

(EO is the unmodulated bias voltage). This procedure may

be used in the simulation of power circuits for which the

input RF signal and the bias voltage are pulsed synchro-

nously. Suitable definitions of the spectra are [11]

yielding n~ = (2P + 1)(2N + 1) and n~ = 2N + 1.

Whenever the power circuit is strongly driven, it is essen-

tial that P be chosen as the number of carrier harmonics

that have to be considered in the CW analysis of the satne

circuit. In such cases, the results of a simulation per-

formed with P = 1 are grossly in error. As an example,

the analysis of a FET power amplifier operating in the

saturation region typically requires values of P ranging

from 4 to 6. Thus any signal flowing in the circuit can be

viewed as the superposition of P + 1 other signals, each

consisting of a modulated carrier harmonic (including dc).

The most obvious approach to the approximation of the

modulating waveform would be to use the truncated Four-

ier series for a sequence of ideal rectangular pulses. How-

ever, this solution is not acceptable for practical purposes

because it does not allow the pulse rise and fall times to

be controlled, and because of the large ripples occurring

in the approximated waveform. Since the circuit response

may exhibit ripples produced by distortion, it is essential

that any spurious fluctuations occurring in the input signal

be much smaller in magnitude, otherwise the results could

be misinterpreted.

A possible way of overcoming these difficulties is to

make use of a non-ideal pulse waveform of the kind shown

in Fig. 1. The abrupt rise and fall at the beginning and at

the end of the pulse are replaced by smooth transitions

(e.g., of sinusoidal shape). The pulse rise and fall times

(t,, $) can thus be accurately defined as the times taken
by the signal envelope to rise or fall between the 10% and

90% (e.g.) amplitude points [12]. Fig. 1 also shows the

other parameters relevant to the definition of the pulse

shape, i.e., the pulse width ~ and the pulse repetition time

T. The duty cycle is defined as r/ T. The ratios t,/T, ~/T

essentially determine the number N of harmonics required

to approximate the pulse shape with a prescribed maxi-

mum ripple, and thus have a major effect on the numerical

cost of the simulation. Although a regular Fourier expan-

sion of the train of pulses usually gives satisfactory re-

sults, the coefficients of (25) can also be numerically op-

timized in order to minimize the ripple. As an example,

the sum of (25) with N = 100 is plotted in Fig. 2 for a

sequence of pulses having a duty cycle of 10% and rise

and fall times equal to 1 % of T. In this case, the maxi-

mum deviation from the exact waveform is about 0.006,

which can be reduced to 0.0051 by optimization.

With the spectrum defined by (28), the Fourier expan-

IL
II I

Fig. 1.

k T I

Details of a realistic pulse waveform to be used in pulsed-RF anal-
ysis.

I

1

s(t)

0 L

t

Fig. 2. Fourier approximation of a periodic sequence of rectangular pulses

(duty cycle = 10%, rise and fall times = 1% of T).

sion of the current through a load resistor R has the form

i(t) = & ; Z,,,,, exp [j(k, q + k, q) t] (30)
kl=–Pk2=–N

where we Write&, k2 fOr Zk (k = [kl k2] ~). In the COIIIIIIOrdY

encountered case of a modulating frequency much smaller

than the carrier (e.g., W2 < O.OIU1), the quantity of pri-

mary interest is the power envelope P(i) of the load cur-

rent, defined as the time average of the instantaneous

power Ri2(t) in a period of the carrier. From (30) by

straightforward calculations we get

P(t) s R k, :_p la~,(t)12 (31)

where

ak,(t)= k,$_Nzk,,~,exp (jk’2L4)zt). (32)

The use of (31) through (32) allows the circuit response

under pulsed-RF conditions to be displayed with a con-

siderable saving of CPU time with respect to a straight-

forward use of (30).
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B. Decoupling the Harmonic-Balance Equations

A straightforward application of the Newton-iteration

based HB technique to pulsed-RF simulation may often

be problematic at the workstation level, because the num-

ber of unknowns of the solving system may become quite

large. It is obvious that the storage and factorization of

the Jacobian by ordinary means are practically impossible

when the number of unknowns exceeds some upper

bounds depending on the computer system in use. As an

example, let us consider a simple FET amplifier excited

by a periodic train of pulses having the envelope shown

in Fig. 1. As it was pointed out in the previous section,

if it is desired to approximate the pulsed waveform with

an accuracy better than 1%, we need to choose N a 100

in (28). Furthermore, for an accurate simulation of the
saturated response of the amplifier, we need to consider

at least P = 4 carrier harmonics. Thus the signal spectrum

contains 1809 lines, the thermal spectrum contains 201

lines, and the total number of unknowns for this analysis

is Nu = 3819. The storage of the full Jacobian then re-

quires about 117 MB of memory in double-precision

arithmetics, and its factorization is practically impossible

on a typical workstation with 16 MB of central memory,

because the time spent in transferring data to and from the

virtual memory becomes virtually infinite.

An obvious way to overcome these difficulties would

be to resort to large computer systems such as vector pro-

cessors [10]. However, an in-depth investigation of the

properties of the Jacobian matrix reveals the existence of

an alternative procedure usable at the workstation level.

In most practical cases of pulsed-RF operation, the mod-

ulating frequency W2 is several orders of magnitude

smaller than the carrier q. This often implies NC02 <<

U1; furthermore, the harmonics of the spectrum (28) usu-

ally tend to drop rapidly as \k2 I is increased. Thus, due to

(1) and (2), all the signals supported by the circuit have a

fast time dependence through q t,and a slow time de-

pendence through W2t.Let us now consider the Fourier

series (15), (22) for the derivatives. If the time slot used

to compute the time-domain samples is of the order of

27r/w1 (and thus much shorter than 27r/u2), the effects of

the modulation are virtually negligible, and all the expan-

sions (15), (22) only contain mixing products for which

kz = O. Assuming that, in the same expansions only har-

monics of al up to the D th order are significant @ s

2P), we end up with the following determination of the

derivatives spectra:

[

O<lkll<D
&~=&$~T=ST~=S~4&=

k’2=o “

(33)

The submatrix of the Jacobian (of the form (13)) asso-

ciated with the kth and s th mixing products, is given by

(14) or (20). Thus, because of (16) or (23), it is a com-

bination of the harmonics of (15), (22) of orders k +- s,
where k, s belong either to the signal or to the thermal

spectrum. Due to the second of (33), this submatrix van-

ishes’ unless Ik2 I = 1s21, because otherwise k & s ~ $j.

Now let the harmonics be gathered into groups according

to the value of lk2~. Since any submatrix of the Jacobian

associated with two harmonics belonging to different

groups is zero, the Jacobian is reduced to a block-diago-

nal form, and the solution of the linear system required to

compute the Newton update is reduced to the solution of

a number of uncoupled systems of smaller size. Specifi-

cally, with the spectra defined by (28) and (29), instead

of computing and factorizing a square matrix of size Nu,

one has tO COIIIpUte and faCtOTiZe one ITKitTiX Of SiZe nd (2P

+ 1) + M, and N matrices of size 2[nd(2P + 1) + M]

each. Note that this implies a linear dependence of the

analysis cost on the number N of harmonics used to ap-

proximate the pulse waveform (25). Thus the simulation

of narrow pulses with fast rise and fall times becomes af-

fordable in this way.

Assuming that the LU decomposition is carried out by

a standard algorithm such as Gauss or Crout [13], so that

the factorization time is 0(2n 3/3) where n is *the matrix

size, this approach usually leads to a dramatic increase of

numerical efficiency. Since the storage is limited to the

nonzero entries of the Jacobian, an equally important

memory saving is also obtained. As an example, let us

consider once again the above-mentioned pulsed-RF
problem. With the indicated dimensions, the LU factor-

ization time for the block-diagonal Jacobian is reduced by

a factor of 104 with respect to the dense case, while the

storage drops from 117 to about 1,2 MB. The numerical

job thus falls well within the reach of a typical worksta-

tion: one Jacobian decomposition takes about 50 CPU

seconds on a SUN SPARCstation 2 with 16 MB of central

memory in double-precision arithmetics. Note that this

procedure is conceptually equivalent to subdividing the

nonlinear solving system (11 ) into a number of uncoupled

smaller subsystems. However, this decoupling is actually

operated on the derivatives only, so that the solution ob-

tained is always exact, provided that convergence be

achieved. On the other hand, since (33) does not simply

represent a mathematical approximation, but rather a

straightforward consequence of the physical nature of the

problem, the power-handling capability of the block-di-

agonal Newton iteration is high. Power amplifiers oper-

ated in saturation under pulsed-RF excitation can be usu-

ally analyzed by this technique without convergence

problems.
Finally, from (16), (23) and the first of (33) it is evident

that the parameter D represents the maximum difference

between the orders of any two harmonics that are consid-

ered coupled under the approximations (33). Thus if the

mixing products belonging to each group are ordered for
increasingvaluesof kl, the corresponding block Subsys-

tern is banded with bandwidth equal to D (in terms of

submatrices of the form (13)). Thus a band-matrix solver

can be used for each block subsystem, with a further per-

formance increase. This fact can be useful in the case of

complex topologies containing several nonlinear devices.
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If D = 2P, all the block subsystems are dense. Note that

for a fixed D, the analysis cost becomes a linear function

of the number P of carrier harmonics, as well.

IV. COMPUTATION OF THERMAL PARAMETERS AND

EXAMPLES

Let us consider a power device having a multiple-finger

topology, e.g., a microwave FET with G gate strips of

dimensions L x W and spacing S between consecutive

fingers. The electrodes are deposited on a semiconductor

substrate of thickness H and thermal conductivity K. The

back of the substrate coincides with the heat sink surface,

and is assumed to be held at a constant temperature To. In

order to compute the thermal resistance, we represent the

active channels as heat sources having the shape of thin

sheets of the same dimensions and positions as the gate

metallizations [14]. Within the simplified approach to

thermal analysis described in Section II, these sources are

assumed to have a common temperature Ts representing

the peak temperature inside the device. The thermal re-

sistance is then defined as

~=T~–TO

Ps
(34)

where Ps is the thermal power delivered by the heat

sources in steady-state conditions.

In order to compute (34), we make use of the well-

known analogy between the temperature field inside the

device and the potential distribution in a microstrip struc-

ture having the same geometry [1], [14]. The analogy is

a consequence of the fact that both the temperature T and

the potential @ satisfy the Laplace equation with constant

boundary conditions. Note that the thermal power across

a given surface is the flux of – KV T, and thus corresponds

to the electric charge in the analogy, since the equivalent

of K is the dielectric constant ~. Thus the equivalent of the

thermal resistance is the inverse capacitance. Specifically,

let us consider a dielectric slab of thickness H and per-

mittivity c, with a ground plane on one side, and G metal

patches (rectangular microstrip sections) having the same

geometries as the FET active channels on the other. The

air-dielectric interface is treated as a magnetic wall be-

cause the thermal conductivity of air is negligible in the

thermal problem. With the strips held at the same poten-

tial, the static capacitance C with respect to ground is

computed by the Green’s function method [15]. Then the

thermal resistance is given by

o=~.
Kc

(35)

The effects of a temperature-dependent thermal conduc-

tivity inside the chip can be easily accounted for, if re-

quired, by the Kirchhoff transform [3].

In order to find the thermal time constant, we first com-

pute the device thermal capacitance y, which for our pres-

ent purposes is defined as the amount of heat required to

raise the peak device temperature Ts by 1‘K, in agree-

ment with (8). The solution of the microstrip problem by

the Green’s function method [15] automatically provides

an approximate evaluation of the potential distribution

4(P) inside the dielectric, and thus of the temperature dis-

tribution T(P) inside the semiconductor chip. In principle,

to obtain the thermal capacitance we carry out the same

calculation twice, with the same heat sink temperature To,

and source temperatures Ts differing by 1 ‘K. If the dif-

ference between the two temperature distributions is de-

noted by 8 T(P), by definition we have

-y=
~

PC tiT(P) dV (36)
v

where p is the material density, c its specific heat, and V

the chip volume. Note that tiT(P) can be more directly

obtained as the temperature distribution generated by the

boundary conditions To = O, Ts = 1. Finally, the thermal

time constant is simply given by

7T = 67. (37)

As an example, let us consider a 2.4 mm GaAs FET

with 0.5 pm gate length and a 12 gate geometry. Let the

gate spacing be 40 pm and the chip thickness 75 pm. The

capacitance of the associated microstrip structure is about

0.093 pF for 6, = 10. Making use of the typical value K

s 0.038 W/mm°K [16] for the thermal conductivity of

gallium arsenide, (35) yields 0 s 25 OK/W. Assuming p

a 5.32 g/cm3, c = 0.325 J/g°K [16], and a chip size

of 0.7 x 0.6 x 0.075 mm, from (36) we obtain ~ a 4.80

“ 10-6 J/ “K. Finally (37) gives ~T s 120 ps. Note that

all these values are roughly in agreement with typical em-

pirical data for a FET of comparable geometry [14].

Now let the same device be embedded in a power am-

plifier having the simple topology illustrated in Fig. 3.

The FET is described by a modified Materka and

Kacprzak model [17] with Z~ss = 488 mA. For illustrative

purposes, the temperature dependence of the FET per-

formance is simply modeled by changing the expression

of the nonlinear drain current source in the following way

[18]:

(38)

where T~ is a fixed reference temperature (TR = 290 “K

for the present case) and & s 1 [14]. Although a more

refined model would be necessary for an accurate simu-

lation, (38) is sufficient to demonstrate the performance

of the analysis algorithm. The device is biased at 9 V,

244 mA for class-A operation. Under CW excitation at

9.7 GHz with a room temperature of 290”K, the circuit

has a saturated output power of +30.4 dBm at the 4 dB

compression level, for which the power-added efficiency

reaches a maximum of about 38.7%. The associated gain

is 7.4 dB. The peak device temperature in these operation

conditions is about 320 ‘K and is constant with time.

Now let the amplifier be excited by a 9.7 GHz sinu-



RIZZOLI et al.: SIMULTANEOUS THERMAL AND ELECTRICAL ANALYSIS 1453

FET +
Parasitic

. -------- LOAD

lFiA

!!

... . . . . .!

.
2

I

&

—

RF
IN

Y
$$

Fig. 3. Schematic topology ofamicrowave FET power amplifier.

soidal carrier modulated by a periodic sequence of rectan-

gular pulses having a pulse repetition frequency of 1 kHz,

and rise and fall times equal to 1 % of the period. For HB

analysis purposes, this waveform is approximated by a

Fourier. series with 100 harmonics, as it was discussed in

Section III. The approximated modulating waveform is

shown in Fig. 2 for a 10% duty cycle. The bias voltage

is pulsed synchronously with the input signal, between O

V and the nominal CW value of 9 V. Thus for a 10% duty

cycle the bias signal waveform is still given by Fig. 2,

with a different vertical scale. Referring to (28), P = 4

harmonics of the carrier are accounted for in the simula-

tion, since this number is, found to be sufficient for com-

puting the transducer gain with a numerical accuracy of

0.1 dB in CW conditions. The size of the numerical prob-

lem then requires the use ,of the decoupling technique de-

scribed in the preceding section. With this approach, the

CPU time required for the pulsed-RF analysis on a SUN

SPARCstation 2 with 16 MB of physical memory, is about

760 CPU seconds for a typical duty cycle of 30 %, starting

all harmonics from zero. This is quite acceptable given

the problem complexity. Note that the analysis takes into

account both the forward gate current and the drain-to-

gate breakdown, as it is required for an accurate simula-

tion of a power amplifier in the saturation region [19].

The adopted breakdown model is the empirical one pro-

posed in [20].

Fig. 4 shows the power envelopes of the input and out-

put pulses for the nominal peak input power level of +23

dBm (4 dB gain compression) and a 10% duty cycle. The

pulse droop [12] produced by the temperature increase

during the “on” state is evident in the output waveform.

The signal and thermal spectra corresponding to the out-,

put waveform of Fig. 4 are given in Figs. 5 and 6. Fig. 7

shows the time dependence of the FET peak temperature

for several values of the duty cycle, ranging from 50%

down to 10%, and provides a comparison with the con-

stant CW temperature. Note that the temperature swing

within the pulse repetition period is found to drop quickly

as the pulse duration is decreased below, the thermal time

constant (Fig. 7). Finally, in Fig. 8 the device thermal

impedance [5] is plotted against the duty cycle. This

quantity is defined here as the ratio between the maximum

excess temperature reached inside the active device and

the average power dissipated in it during the pulse “on”

state.
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Fig. 4. Power envelopes of the input and output pulse waveforms for a
pulse duty cycle of 10%.
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Fig. 5. Power spectrum of the output signal for a pulse duty cycle of 10%.
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Fig. 6. Amplitude spectrum of the temperature waveform for a pulse duty
cycle of 10%.

V. FUTURE DEVELOPMENTS AND CONCLUSION

The paper has introduced a conceptually rigorous bar-

monic-balance approach to the computer-aided analysis

of nonlinear microwave circuits containing temperature-

dependent active devices, and an efficient numerical im-
plementation of this approach. The algorithmic capabili-

ties of the method have been demonstrated by presenting

the coupled electrical and thermal analysis of a micro-
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Fig. 7. Time-dependent peak temperature in the active device for several
values of the pulse duty cycle. The median instants of the pulses are aligned
at t = 0.5 ms.
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Fig. 8. Dependence of the device thermal impedance on the pulse duty

cycle for a constant pulse repetition time (T = 1 ms).

wave power amplifier. To the authors’ knowledge, a sim-

ulation tool of the same generality, including the ability

to deal with pulsed-RF excitations, was not previously

available. Thus the present work is likely to provide an

important link between circuit- and process-oriented non-

linear CAD techniques. Since this work is essentially

aimed at providing a proof of feasibility, several aspects

of the problem have been considerably simplified. A num-

ber of refinements and developments are necessary for a

full exploitation of the potential of this new analysis ap-

proach. These include, among others, accurate tempera-

ture-dependent equivalent circuits for the active devices,

more refined models for the heat flow from the active de-

vices to the ambient (e. g., includig a heat-sink model),

and the consideration of the nonlinearity of the device

thermal equations. Work on these subjects is currently in

progress, and will be presented elsewhere.
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