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Abstract—The paper introduces a new software tool for the
simultaneous determination of the thermal and electrical
steady-state regimes of nonlinear microwave circuits contain-
ing temperature-dependent active devices. The analysis tech-
nique is an extension of the classic piecewise harmonic-balance
method, and is quite general-purpose. It can be applied to net-
works operating under multiple-tone excitation, including
pulsed-RF regimes. The simulation problem is reduced to a
nonlinear algebraic solving system whose unknowns are elec-
trical and thermal state-variable harmonics. Advanced numer-
ical techniques are used to effectively overcome the difficulties
arising from the high degree of nonlinearity and from the very
large number of unknowns of the numerical problem. The pro-
gram incorporates a facility for the evaluation of the thermal
constants of multiple-finger planar devices starting from geo-
metrical data.

I. INTRODUCTION

N THE computer-aided design of microwave circuits,

especially power circuits, the prediction of the active
device operating temperatures represents a major con-
cern. The theoretical research on this subject is usually
aimed at the determination of the temperature distribution
inside an active device under dc (or CW) operating con-
ditions (e.g., [1]-[3]). From this kind of analysis, or al-
ternatively from suitable measurement procedures (e.g.,
[4]), one obtains the peak temperature in the device (e.g.,
the channel temperature in a microwave FET), which is
used to compute the device thermal resistance [3].

For periodically driven circuits (CW or single-tone op-
eration), it is usually safe to assume that the steady-state
device temperatures are time independent, because the
thermal time constants are large with respect to the RF
period. In some cases, especially in class-A operation, the
knowledge of a device thermal resistance may then pro-
vide a rough a priori estimate of its peak operating tem-
perature, making use of the expected bias point and
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power-added efficiency. In turn, this estimate may be used
to adjust the temperature-dependent parameters of the de-
vice equivalent circuit. The situation is much more com-
plicated in class-AB or class-C operation, since then the
actual bias point is determined by nonlinear effects, such
as rectification, and is not a priori known. Further diffi-
culties arise under multitone excitation, since some of the
intermodulation (IM) products may have very long pe-
riods. As a typical example, in pulsed-RF conditions each
active device undergoes a thermal cycle which may have
a major influence on the circuit performance, but ob-
viously cannot be simply estimated. In all such cases the
analysis must include the search for the (possibly time-
dependent) unknown temperatures.

In this paper we introduce a novel CAD tool for the
simultaneous determination of the electrical regime and
the peak device temperatures in a nonlinear microwave
circuit containing temperature-dependent devices and
driven by multitone signals, including the pulsed-RF case.
The electrical behavior of each nonlinear device is de-
scribed by generalized parametric equations including
temperature among the state variables, and the thermal
behavior is characterized by a thermal resistance and a
thermal time constant. The thermal parameters of multi-
ple-finger planar devices are evaluated starting from lay-
out information, so that the transient thermal properties
of such devices can be directly related to their geometries.
As an example, a rigorous computation of the so-called
“‘thermal impedance’’ [5] of a power device (depending
on pulse width) becomes straightforward in this way. This
new simulation capability thus represents a significant step
in the development of a general-purpose process-oriented
microwave CAD system.

The method of analysis presented in the paper is an ex-
tension of the well-known piecewise harmonic-balance
(HB) technique based on circuit decomposition. In steady-
state multitone operation, both the temperatures and the
electrical signals may be represented by multidimensional
truncated Fourier expansions. With the harmonic-balance
approach, the coefficients of such expansions represent the
problem unknowns. Since the device equations are tem-
perature-dependent, and in turn the device temperatures
depend on the voltages and currents at the device ports
through the internally dissipated powers, all these un-
knowns are coupled and must be determined by the nu-
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.merical solution of a unique nonlinear algebraic system.
The evaluation of the device thermal parameters is based
on the well-known equivalence between the temperature
field and the potential distribution in a microstrip struc-
ture [6]. The general extension of the harmonic-balance
technique to thermal aspects is covered in Section II of
the paper. This section also addresses the efficient solu-
tion of the nonlinear system by a Newton-Raphson
method based on the exact computation of the Jacobian
matrix. Section IIT is more specifically devoted to a dis-
cussion of the pulsed-RF analysis of power circuits. The
same section also shows that the physical nature of the
pulsed-RF problem allows the harmonic-balance equa-
tions to be effectively decoupled, so that this class of sim-
ulations can be effectively handled on ordinary worksta-
tions in spite of their large numerical sizes. Finally,
Section IV describes the computation of the thermal pa-
rameters of a power device, and presents the analysis of
a FET amplifier circuit for illustrative purposes.

II. Tue HAarRMONIC BALANCE TECHNIQUE
A. Formulation of the Problem

Let us consider a nonlinear microwave circuit operating
in a quasi-periodic electrical regime generated by the in-
termodulation of F sinusoidal tones of incommensurable
fundamental angular frequencies w;. Any signal a(¢) sup-
ported by the circuit may be represented by the multiple
Fourier expansion

a(t) = 2 Ag exp (jUh) M
keS .

where {; is a generic IM product of the fundamentals,

ie.,

F
Q= ‘Zl kw; = kTw, )

In (1), (2) k; is an integer harmonic number, k is an
F-vector of harmonic numbers, and w, is the F-vector of
the fundamentals. The vector k in (2) spans a finite subset
S of the k-space (containing the origin) which will be con-
ventionally named the signal spectrum. The Fourier coef-
ficient A, will be named the harmonic of a(t) at @y, (or the
k-th harmonic of a(r)). Since we want the signal (1) to be
real, § must be symmetric with respect to the origin, and
A_, = AF. We shall also denote by S* the subset of S
such that Q,>0forkeS™.

Let the nonlinear subnetwork be described by the gen-
eralized parametric equations [7]

n

d . dx
v(t) = u | x(H), —, -, —, xp(), T
) {() - e ()]
‘ dx d"x '
7 1) = ), —, ¢+ ¢ —
l() w [x( )7 dt 5 s dtn s xD(t), T(t)} (3)
where v(?), i(f) are vectors of voltages and currents at the
common ports, x(¢) is a vector of electrical state variables

(ESV) and x5, (#) is a vector of time-delayed electrical state
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variables, i.e., xp; (f) = x;(t — 7;) with 7; a time constant.
All vectors of electrical quantities appearing in (3) have
a same size n,; equal to the number of common (device)
ports. T(?) is an M-vector of absolute temperatures mea-
sured at M suitable locations inside the nonlinear subnet-
work. In the first application of this new methodology,
we shall assume that the nonlinear subnetwork is a col-
lection of M nonlinear devices (M < n,) thermally iso-
lated from one another, and that the entries of T may be
identified with the peak temperatures in such devices. In
turn, 7(r) will be written in the form

I = To + ATQ) )

where T, is a common room temperature which will be
considered as a priori known, and A T(¢) is the set of max-
imum excess temperatures reached inside the nonlinear
devices. The entries of A T(¢) represent the thermal state
variables (TSV). In principle, when the circuit is driven
by a multitone excitation such as a pulsed RF signal, each
TSV (namely, AT, (¢), 1 < r < M) is a quasi-periodic
function of time of the form (1). In practice the thermal
time constants of real devices are much longer than the
RF period, so that only low-frequency components are
usually sufficient for an adequate description of the tem-
perature waveforms. Thus A T,(f) will be represented by
(1) with S replaced by a thermal spectrum Sy C S.

The quasi-periodic electrical regime of the nonlinear
circuit resulting from a multitone excitation is completely
defined by the set x(f) of electrical state variables and by
the set A T(?) of thermal state variables. Because of (1),
the state can be equivalently identified by the vectors X,
A of the real and imaginary parts of the electrical and ther-
mal state-variable harmonics, respectively. The entries of
these vectors represent the problem unknowns. The total
number of unknowns is Ny = nzng + Mny, where ng is
the number of lines of the signal spectrum, and ny is the
number of lines of the thermal spectrum. Performing a
circuit simulation by the HB technique means finding these
unknowns. To do so, we derive a nonlinear solving sys-
tem by combining the usual requirement of vanishing
electrical harmonic-balance (EHB) errors with the ther-
mal equations of the nonlinear devices.

The linear subnetwork may be represented by the fre-
quency-domain equation

Y(w) V(w) + Nw) + I(w) = 0 5)

where V(w), I(w) are vectors of voltage and current pha-
sors at the device ports, Y(w) is the linear subnetwork ad-
mittance matrix, and N(w) is a vector of Norton equiva-
lent current sources. Thus the set of complex EHB errors
at a generic IM product {; has the expression

Ep (X, A) = YQp U (X, A) + N + Wi (X, A)
(©

where U, W, are the k'th harmonics of u(?), w(f). In order
to avoid the use of negative frequencies, the nonlinear
solving system is formulated in terms of a vector Hy of
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real and imaginary parts of the EHB errors given by (6)
for k € S . Thus the electrical part of the solving system
has the form

Hp(X, A) = 0. (7

In the first application of this new analysis technique,
we shall assume for simplicity that the thermal behavior
of each device is fully characterized by a thermal resis-
tance § and by a thermal time constant 7. Thus the ther-
mal equation of the generic (rth) device can be written

d AT,
TTr dt = —AT, @) + erpr(t) ®

where p, () is the instantaneous power dissipated in the
device under consideration, namely

(3]
P = ]Z u; () w; (2). )

The superscript (r) in (9) denotes that the summation is
only extended to the ports belonging to the rth device.
We shall also assume that all devices are thermally lin-
ear (i.e., 0, and 77, are constants), though the simulation
methodology introduced here could be easily extended to
the case of temperature-dependent thermal parameters [8],
[9]. Taking the (multiple) Fourier transform of (8) we can
thus define the complex thermal harmonic-balance (THB)
error for the rth device at 2, as
ETr.k(X’ A) =

P (X, A) — 4, (10)

1+ ijTTr
where P, , and A, , are the kth harmonics of p,(f) and
AT, (r), respectively. Note that the THB errors are easily
computed through (3) and (9) as functions of the circuit
state. At this stage we introduce a vector Hy of real and
imaginary parts of all the errors (10) for 1 < r < M and

k € S7. The complete nonlinear solving system thus takes

the form

{HEOL A) =0
(11)

Hp(X, A) = 0,

(11) is a system of Ny nonlinear real equations in Ny real
unknowns, which can be solved by well-known numerical
approaches, such as the Newton-Raphson method.

Note that the solution of (11) simultaneously provides
the electrical rogime of the nonlinear circuit (described by
X) and the time-dependent peak temperatures of the non-
linear devices (described by A).

B. Exact Computation of the Jacobian Matrix

It is well established that the best performance of the
Newton algorithm is obtained when the Jacobian of the
nonlinear system can be evaluated by a theoretically exact
algorithm rather than by numerical perturbations [10].
This has the twofold advantage of increasing both the
speed and the robustness of the analysis algorithm (par-
ticularly for large-size jobs), because the Jacobian eval-

uation process becomes faster, and the derivatives more
accurate. The computation of the exact Jacobian of (11)
will be discussed in this section.

The Jacobian may be written

oy o
= X A N |:JEE JET:|‘ (12)

d0Hy OHy Je Jrr

39X oA

Both for case of representation and for later convenience,
the Jacobian is organized frequency-wise, i.e., is parti-
tioned into submatrices, each containing the derivatives
of the real and imaginary parts of the HB errors at a given
mixing product, with respect to the real and imaginary
parts of the SV harmonics at another mixing product. As
an example, the generic submatrix of Jgz has the expres-
sion
Jd Re [EEk] d Re [EEk]

7 B 0 Re [X,] 0 Im[X[] 13)
BEEs = 9 Im [Eg] 9 Im [Egd]
9 Re[X,] 8Im[X,]

where X; is the set of complex ESV harmonics at {;. From
(6) we obtain, fork, se ST andte S}

9Epg, U, oW,
- Y@ +
orixy T g Yo
OE g 3U, oW,
CE -y 14
ol T oan toag MY

where the function f[+] may denote either the real or the
imaginary part. The derivatives of the voltage and current
harmonics U, W;, are found in the following way. For the
voltages (e.g.) we first introduce the multiple Fourier ex-
pansions

du .
E = quZ?:EE Cm,q exp (]qu)
ou Z D .

E = G C, exp (j&,0)
du

T qe%:” Ay exp (jQ,0
where yo = x, ¥, = d"x/dt"™ (1 < m < n), and Sgg, Sgr
will be named derivatives spectra. The derivation of the
first of (3) now yields the derivatives of the voltage har-
monics with respect to the state-variable harmonics (k, s
eSt, teSH):

n

as5)

U, o .
af[Xs] - m=0f[1 +J](]Qs) [I_m,k—s + {f[l +]]}
) (~1)m£m,k+s]
e _ 1+ j1[4 [ 4+ in?
If[A/] =/ JHA - + {11 +j1} Ag i d (16)
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where

Em,‘k‘s = Cm,k—s + 821C£~sexp (—stT)

(17

In (17) § is Kronecker’s symbol and t is the diagonal ma-
trix of the time delays. The vector summation index g in
each of the derivatives (15) must span the entire set of
values required in (16), where the combinations k + s and
k + t appear. This explains the introduction of indepen-
dent spectra for the derivatives. Similar expressions hold
for the derivatives of the current harmonics. Equations (16)
and (17) together with (14) allow a fast computation of
Jer and Jg7. Note that Jg coincides with the Jacobian
matrix of a conventional HB analysis based on electrical
state variables only [7].

In order to evaluate J7g and Jpr, we first gather all the
complex errors (10) associated with a given IM product
Q; into a vector of complex THB errors analogous to
(6), namely

Ep (X, A) = LiP (X, A) — Ay (18)

where Py and A, are the sets of kth harmonics of p, (¢) and
AT, (t) for 1 < r < M, respectively, and L is the diag-
onal matrix

0O <m=<n).

L, = diag {—— O ] l=r=M). 19

1 + ij Trr

From (18) we obtain, fork, te S; andse S+,

0En oP,
IFIX) K ofIX)
0E aP,

—fIL + 16y (20)

FIAL - *oflA)]

where Ij; denotes an identity matrix of order M.

The key information required for the computation of
(20) is thus represented by the derivatives of P; with re-
spect to both X, and A ,. These can be obtained in the fol-
lowing way. Let us temporarily denote by y any of the
arguments of the device equations (3). From (9) we get

op.t) 3 _ (© dw; (t)>
5 ,Z—< F» w; () + u;(1) F» @1

The point here is that the samples of u, w, du /dy, dw/dy,
are already available as a result of the computation of Jgg,
Jer (and in particular of the expansions (15)), so that the
samples of (21) may be immediately found. Thus we can
also compute the coefficients of the multiple Fourier ex-
pansions

ap : .

5_ = HEZS;TE Fm,q exp (]th)

) .

ﬁ) = quSJTE F,ll) exp (2,0

F) .

5’11, = 2 G, exp (2,0 22)
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where p is the vector of the dissipated powers p,(7) (1 <
r < M), and Syg, Srpare suitable derivatives spectra. The
required derivatives may now be expressed by equations
similar to (16), (17):

iy " i1(7Q2)™ 112
T = o 1+ TR IRy + {FIL + 1}
) (_l)m_m,k+s]
aP,
af[ékt] =f[1 +J] [Gk——t + {f[l +j]}2Gk+t] (23)
where

@i = Fpps + 00FP_sexp (—jQ1)  (24)

and k, te S5 seS*.

III. PuLseD-RF OPERATION OF POWER CIRCUITS
A. Analysis Approach
Let the nonlinear circuit be excited by an RF sinusoidal
source of angular frequency w, (carrier) modulated by a
periodic signal s(r) of period 27 /w,. For the applications
of interest in this section, s(r) is ideally a sequence of

“rectangular pulses, which for practical purposes is ap-

proximated by a truncated Fourier expansion with N har-
monics. Thus we have

N
s = 2 Se exp (o) @5)

where S_;, = Sj;. In agreement with (1), the unmodulated
input signal is represented by :

v(f) = 2 Re [V, exp (jw, D]
so that the modulated excitation becomes

u® = v()s@®)

(26)

.
=2Re {k 2 ViSq exp [jlw + kzwz)t]}. 27)

Exciting the circuit by the signal (27) is equivalent to
applying at the RF input port 2N + 1 sinusoidal sources
of complex amplitudes 2VS, and frequencies w; + ky,
(0 < |ky| = N) connected in series. It is thus clear that
a pulsed-RF analysis can be treated by the harmonic-bal-
ance technique as a special case of multitone excitation.
The exciting frequencies w; + k,w, can be viewed as in-
termodulation products of two incommensurable funda-
mentals w;, w,, so that the problem defined by the exci-
tation (27) is in fact a two-tone problem, with an unusually
large number of harmonically related sinusoidal sources.
Of course, this is only true when the sequence of pulses
is periodic. However, if the pulse repetition time is long
enough with regpect to the thermal constants of the active
devices, the results are also valid for isolated pulses (and
for non-periodic sequences). Note that the modulation de-
fined by (25) can be applied to the bias sources as well.
In this case a dc source EyS, and N sinusoidal sources of
complex amplitudes 2E, S, at frequencies kyw, (1 < k;
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=< N) are connected in series to the bias port of interest
(E, is the unmodulated bias voltage). This procedure may
be used in the simulation of power circuits for which the
input RF signal and the bias voltage are pulsed synchro-
nously. Suitable definitions of the spectra are [11]

0< |k <P
S & (28)
0< |k =N
k=0
S (29)
0=<lk] =N
yielding ng = 2P + 1)(2N + 1) and ny = 2N + 1.

Whenever the power circuit is strongly driven, it is essen-
tial that P be chosen as the number of carrier harmonics
that have to be considered in the CW analysis of the same
circuit. In such cases, the results of a simulation per-
formed with P = 1 are grossly in error. As an example,
the analysis of a FET power amplifier operating in the
saturation region typically requires values of P ranging
from 4 to 6. Thus any signal flowing in the circuit can be
viewed as the superposition of P + 1 other signals, each
consisting of a modulated carrier harmonic (including dc).

The most obvious approach to-the approximation of the -

modulating waveform would be to use the truncated Four-
ier series for a sequence of ideal rectangular pulses. How-
ever, this solution is not acceptable for practical purposes
because it does not allow the pulse rise and fall times to
be controlled, and because of the large ripples occurring
in the approximated waveform. Since the circuit response
may exhibit ripples produced by distortion, it is essential
that any spurious fluctuations occurring in the input signal
be much smaller in magnitude, otherwise the results could
be misinterpreted.

A possible way of overcoming these difficulties is to
make use of a non-ideal pulse waveform of the kind shown
in Fig. 1. The abrupt rise and fall at the beginning and at
the end of the pulse are replaced by smooth transitions
(e.g., of sinusoidal shape). The pulse rise and fall times
(t,, t;) can thus be accurately defined as the times taken
by the signal envelope to rise or fall between the 10% and
90% (e.g.) amplitude points [12], Fig. 1 also shows the
other parameters relevant to the definition of the pulse
shape, i.e., the pulse width 7 and the pulse repetition time
T. The duty cycle is defined as 7/T. The ratios 1,/ T, t;/T
essentially determine the number N of harmonics required
to approximate the pulse shape with a prescribed maxi-
mum ripple, and thus have a major effect on the numerical
cost of the simulation. Although a regular Fourier expan-
sion of the train-of pulses usually gives satisfactory re-
sults, the coefficients of (25) can also be numerically op-
timized in order to minimize the ripple. As an example,
the sum of (25) with N = 100 is plotted in Fig. 2 for a
sequence of pulses having a duty cycle of 10% and rise
and fall times equal to 1% of 7. In this case, the maxi-
mum deviation from the éxact waveform is about 0.006,
which can be reduced to 0.0051 by optimization.

With the spectrum defined by (28), the Fourier expan-
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Fig. 1. Details of a realistic pulse waveform to be used in pulsed-RF anal-
ysis.

s()

S | |

.t

Fig. 2. Fourier approximation of a periodic sequence of rectangular pulses
(duty cycle = 10%, rise and fall times = 1% of T).

sion of the current through a load resistor R has the form

M=

' P
i = 2

B i €xp [jlki w0y + khwn)f]l  (30)
ki=—-Pk .

H

—-N

where we write I, 4, for I, (k = [k, k,]7). In the commonly
encountered case of a modulating frequency much smaller
than the carrier (e.g., w, < 0.01w,), the quantity of pri-
mary interest is the power envelope P(?) of the load cur-
rent, defined as the time average of the instantaneous
power Ri*(#) in a period of the carrier. From (30) by
straightforward calculations we get

P

i

P
R 2 a0 (1)
k|=—P.

where

N
a®) = 20 Iy, exp (o). (32)
ky=—N

The use of (31) through (32) allows the circuit response
under pulsed-RF conditions to be displayed with a con-
siderable saving of CPU time with respect to a straight-
forward use of (30).
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B. Decoupling the Harmonic-Balance Equations

A straightforward application of the Newton-iteration
based HB technique to pulsed-RF simulation may often
be problematic at the workstation level, because the num-
ber of unknowns of the solving system may become quite
large. It is obvious that the storage and factorization of
the Jacobian by ordinary means are practically impossible
when the number of unknowns exceeds some upper
bounds depending on the computer system in use. As an
example, let us consider a simple FET amplifier excited
by a periodic train of pulses having the envelope shown
in Fig. 1. As it was pointed out in the previous section,
if it is desired to approximate the pulsed waveform with
an accuracy better than 1%, we need to choose N = 100
in (28). Furthermore, for an accurate simulation of the
saturated response of the amplifier, we need to consider
at least P = 4 carrier harmonics. Thus the signal spectrum
contains 1809 lines, the thermal spectrum contains 201
lines, and the total number of unknowns for this analysis
is Ny = 3819. The storage of the full Jacobian then re-
quires about 117 MB of memory in double-precision
arithmetics, and its factorization is practically impossible
on a typical workstation with 16 MB of central memory,
because the time spent in transferring data to and from the
virtual memory becomes virtually infinite.

An obvious way to- overcome these difficulties would
be to resort to large computer systems such as vector pro-
cessors [10]. However, an in-depth investigation of the
properties of the Jacobian matrix reveals the existence of
an alternative procedure usable at the workstation level.
In most practical cases of pulsed-RF operation, the mod-
ulating frequency w, is several orders of magnitude
smaller than the carrier w;. This often implies Nw, <<
w;; furthermore, the harmonics of the spectrum (28) usu-
ally tend to drop rapidly as |k,| is increased. Thus, due to
(1) and (2), all the signals supported by the circuit have a
fast time dependence through w;#, and a slow time de-
pendence through w,¢. Let us now consider the Fourier
series (15), (22) for the derivatives. If the time slot used
to compute the time-domain samples is of the order of
27 /w; (and thus much shorter than 27 / w,), the effects of
the modulation are virtually negligible, and all the expan-
sions (15), (22) only contain mixing products for which
k, = 0. Assuming that in the same expansions only har-
monics of w; up to the Dth order are significant (D <
2P), we end up with the following determination of the
derivatives spectra:

0< |k =D

Ser = Ser = S = S 2 S, =
EE ET TE T d {k2=0

(33)

The submatrix of the Jacobian (of the form (13)) asso-
ciated with the kth and sth mixing products, is given by
(14) or (20). Thus, because of (16) or (23), it is a com-
bination of the harmonics of (15), (22) of orders k + s,
where k, s belong either to the signal or to the thermal
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spectrum. Due to the second of (33), this submatrix van-
ishes unless |k,| = |s,|, because otherwise k + s & S;.
Now let the harmonics be gathered into groups according
to the value of |k,|. Since any submatrix of the Jacobian
associated with two harmonics belonging to different
groups is zero, the Jacobian is reduced to a block-diago-
nal form, and the solution of the linear system required to
compute the Newton update is reduced to the solution of

‘a number of uncoupled systems of smaller size. Specifi-

cally, with the spectra defined by (28) and (29), instead
of computing and factorizing a square matrix of size Ny,
one has to compute and factorize one matrix of size n; (2P
+ 1) + M, and N matrices of size 2[n;(2P + 1) + M]

-each. Note that this implies a linear dependence of the

analysis cost on the number N of harmonics used to ap-
proximate the pulse waveform (25). Thus the simulation
of narrow pulses with fast rise and fall times becomes af-
fordable in this way.

Assuming that the LU decomposition is carried out by

" a standard algorithm such as Gauss or Crout [13], so that

the factorization time is O(2n>/3) where n is the matrix
size, this approach usually leads to a dramatic increase of
numerical efficiency. Since the storage is limited to the
nonzero entries of the Jacobian, an equally important
memory saving is also obtained. As an example, let us
consider once again the above-mentioned pulsed-RF
problem. With the indicated dimensions, the LU factor-
ization time for the block-diagonal Jacobian is reduced by
a factor of 10* with respect to the dense case, while the
storage drops from 117 to about 1.2 MB. The numerical
job thus falls well within the reach of a typical worksta-
tion: one Jacobian decomposition takes about 50 CPU
seconds on a SUN SPARCstation 2 with 16 MB of central
memory in double-precision arithmetics. Note that this
procedure is conceptually equivalent to subdividing the
nonlinear solving system (11) into a number of uncoupled
smaller subsystems. However, this decoupling is actually
operated on the derivatives only, so that the solution ob-
tained is always exact, provided that convergence be
achieved. On the other hand, since (33) does not simply
represent a mathematical approximation, but rather a
straightforward consequence of the physical nature of the
problem, the power-handling capability of the block-di-
agonal Newton iteration is high. Power amplifiers oper-
ated in saturation under pulsed-RF excitation can be usu-
ally analyzed by this technique without convergence
problems.

Finally, from (16), (23) and the first of (33) it is evident
that the parameter D represents the maximum difference
between the orders of any two harmonics that are consid-
ered coupled under the approximations (33). Thus if the
mixing products belonging to each group are ordered for
increasing values of ky, the corresponding block subsys-
tem is banded with bandwidth equal to D (in terms of
submatrices of the form (13)). Thus a band-matrix solver
can be used for each block subsystem, with a further per-
formance increase. This fact can be useful in the case of
complex topologies containing several nonlinear devices.
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If D = 2P, all the block subsystems are dense. Note that
for a fixed D, the analysis cost becomes a linear function
of the number P of carrier harmonics, as well.

IV. CompruUTATION OF THERMAL PARAMETERS AND
ExaMPLES

Let us consider a power device having a multiple-finger
topology, e€.g., a microwave FET with G gate strips of
dimensions L X W and spacing S between consecutive
fingers. The electrodes are deposited on a semiconductor
substrate of thickness H and thermal conductivity «. The
back of the substrate coincides with the heat sink surface,
and is assumed to be held at a constant temperature 7. In
order to compute the thermal resistance, we represent the
active channels as heat sources having the shape of thin
sheets of the same dimensions and positions as the gate
metallizations [14]. Within the simplified approach to
thermal analysis described in Section II, these sources are
assumed to have a common temperature Ty representing
the peak temperature inside the device. The thermal re-
sistance is then defined as

Ts — T

g =-=—"

2 (34)
where Pg is the thermal power delivered by the heat
sources in steady-state conditions.

In order to compute (34), we make use of the well-
known analogy between the temperature field inside the
device and the potential distribution in a microstrip struc-
ture having the same geometry [1], [14]. The analogy is
a consequence of the fact that both the temperature 7 and
the potential ¢ satisfy the Laplace equation with constant
boundary conditions. Note that the thermal power across
a given surface is the flux of —«V T, and thus corresponds
to the electric charge in the analogy, since the equivalent
of « is the dielectric constant e. Thus the equivalent of the
thermal resistance is the inverse capacitance. Specifically,
let us consider a dielectric slab of thickness H and per-
mittivity e, with a ground plane on one side, and G metal
patches (rectangular microstrip sections) having the same
geometries as the FET active channels on the other. The
air-dielectric interface is treated as a magnetic wall be-
cause the thermal conductivity of air is negligible in the
thermal problem. With the strips held at the same poten-
tial, the static capacitance C with respect to ground is
computed by the Green’s function method [15]. Then the
thermal resistance is given by

€

0 =—.
kC

(35)

The effects of a temperature-dependent thermal conduc-
tivity inside the chip can be easily accounted for, if re-
quired, by the Kirchhoff transform [3].

In order to find the thermal time constant, we first com-
pute the device thermal capacitance v, which for our pres-
ent purposes is defined as the amount of heat required to
raise the peak device temperature 7y by 1°K, in agree-
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ment with (8). The solution of the microstrip problem by
the Green’s function method [15] automatically provides
an approximate evaluation of the potential distribution
¢(P) inside the dielectric, and thus of the temperature dis-
tribution T(P) inside the semiconductor chip. In principle,
to obtain the thermal capacitance we carry out the same
calculation twice, with the same heat sink temperature 7y,
and source temperatures 7 differing by 1°K. If the dif-
ference between the two temperature distributions is de-
noted by 67(P), by definition we have

¥y = SV pc 6T(P) dV (36)

where p is the material density, c its specific heat, and V
the chip volume. Note that 67(P) can be more directly
obtained as the temperature distribution generated by the
boundary conditions 7y = 0, Tg = 1. Finally, the thermal
time constant is simply given by

77 = Ov. 37)

As an example, let us consider a 2.4 mm GaAs FET
with 0.5 um gate length and a 12 gate geometry. Let the
gate spacing be 40 um and the chip thickness 75 um. The
capacitance of the associated microstrip structure is about
0.093 pF for ¢, = 10. Making use of the typical value «
= 0.038 W /mm°K [16] for the thermal conductivity of
gallium arsenide, (35) yields § = 25°K/W. Assuming p
= 532 g/cm’, ¢ = 0.325 J/g°K [16], and a chip size
0f 0.7 X 0.6 X 0.075 mm, from (36) we obtain y = 4.80
- 107¢ J/°K. Finally (37) gives 77 = 120 us. Note that
all these values are roughly in agreement with typical em-
pirical data for a FET of comparable geometry [14].

Now let the same device be embedded in a power am-
plifier having the simple topology illustrated in Fig. 3.
The FET is described by a modified Materka and
Kacprzak model [17] with Ipgs = 488 mA. For illustrative
purposes, the temperature dependence of the FET per-
formance is simply modeled by changing the expression
of the nonlinear drain current source in the following way
[18]:

. , Tr |
ips(T) = ips(Tg) [7} (38)

where Ty is a fixed reference temperature (I = 290°K
for the present case) and o = 1 [14]. Although a more
refined model would be necessary for an accurate simu-
lation, (38) is sufficient to demonstrate the performance
of the analysis algorithm. The device is biased at 9 V,
244 mA for class-A operation. Under CW excitation at
9.7 GHz with a room temperature of 290°K, the circuit
has a saturated output power of +30.4 dBm at the 4 dB
compression level, for which the power-added efficiency
reaches a maximum of about 38.7%. The associated gain
is 7.4 dB. The peak device temperature in these operation
conditions is about 320°K and is constant with time.
Now let the amplifier be excited by a 9.7 GHz sinu-
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FET +
Parasitics

LOAD

Fig. 3. Schematic topology of a microwave FET power amplifier.

soidal carrier modulated by a periodic sequence of rectan-
gular pulses having a pulse repetition frequency of 1 kHz,
and rise and fall times equal to 1% of the period. For HB
analysis purposes, this waveform is approximated by a
Fourier.series with 100 harmonics, as it was discussed in
Section III. The approximated modulating waveform is
shown in Fig. 2 for a 10% duty cycle. The bias voltage
is pulsed synchronously with the input signal, between 0
V and the nominal CW value of 9 V. Thus for a 10% duty
cycle the bias signal waveform is still given by Fig. 2,
with a different vertical scale. Referring to (28), P = 4
harmonics of the carrier are accounted for in the simula-
tion, since this number is found to be sufficient for com-
puting the transducer gain with a numerical accuracy of
0.1 dB in CW conditions. The size of the numerical prob-
lem then requires the use of the decoupling technique de-
scribed in the preceding section. With this approach, the
CPU time required for the pulsed-RF analysis on a SUN
SPARCstation 2 with 16 MB of physical memory, is about
760 CPU seconds for a typical duty cycle of 30%, starting
all harmonics from zero. This is quite acceptable given
the problem complexity. Note that the analysis takes into
account both the forward gate current and the drain-to-
gate breakdown, as it is required for an accurate simula-
tion of a power amplifier in the saturation region [19].
The adopted breakdown model is the empirical one pro-
posed in [20]. )

Fig. 4 shows the power envelopes of the input and out-
put pulses for the nominal peak input power level of +23
dBm (4 dB gain compression) and a 10% duty cycle. The
pulse droop [12] produced by the temperature increase
during the ‘‘on’’ state is evident in the output waveform.
The signal and thermal spectra corresponding to the out-
put waveform of Fig. 4 are given in Figs. 5 and 6. Fig. 7
shows the time dependence of the FET peak temperature
for several values of the duty cycle, ranging from 50%
down to 10%, and provides a comparison with the con-
stant CW temperature. Note that the temperature swing
within the pulse repetition period is found to drop quickly
as the pulse duration is decreased below the thermal time
constant (Fig. 7). Finally, in Fig. 8 the device thermal
impedance [5] is plotted against the duty cycle. This
guantity is defined here as the ratio between the maximum
excess temperature reached inside the active device and
the average power dissipated in it during the pulse “‘on”’
state.
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Fig. 4. Power envelopes of the input and output pulse waveforms for a
pulse duty cycle of 10%.
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Fig. 5. Power spectrum of the output signal for a pulse duty cycle of 10%.
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Fig. 6. Amplitude spectrum of the temperature waveform for a pulse duty
cycle of 10%.

V. FUuturRE DEVELOPMENTS AND CONCLUSION

The paper hag introduced a conceptually rigorous har-
monic-balance approach to the computer-aided analysis
of nonlinear microwave circuits containing temperature-
dependent active devices, and an efficient numerical im-
plementation of this approach. The algorithmic capabili-
ties of the method have been demonstrated by presenting
the coupled electrical and thermal analysis of a micro-
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Fig. 7. Time-dependent peak temperature in the active device for several
values of the pulse duty cycle. The median instants of the pulses are aligned
att = 0.5 ms.
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Fig. 8. Dependence of the device thermal impedance on the pulse duty
cycle for a constant pulse repetition time (7 = 1 ms).

wave power amplifier. To the authors’ knowledge, a sim-
ulation tool of the same generality, including the ability
to deal with pulsed-RF excitations, was not previously
available. Thus the present work is likely to provide an
important link between circuit- and process-oriented non-
linear CAD techniques. Since this work is essentially
aimed at providing a proof of feasibility, several aspects
of the problem have been considerably simplified. A num-
ber of refinements and developments are necessary for a
full exploitation of the potential of this new analysis ap-
proach. These include, among others, accurate tempera-
ture-dependent equivalent circuits for the active devices,
more refined models for the heat flow from the active de-
vices to the ambient (e.g., includig a heat-sink model),
and the consideration of the nonlinearity of the device
thermal equations. Work on these subjects is currently in
progress, and will be presented elsewhere.
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